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Designing For Cost

by
Edwin B. Dean and Resit Unal

THE MENTAL PROCESS OF DESIGNING FOR COST

Designing for cost is a state of mind. Of course, a lot of technical knowledge is required and
the use of appropriate tools will improve the process.

Unfortunately, the extensive use of weight based cost estimating relationships has generated
a perception in the aerospace community that the primary way to reduce cost is to reduce
weight. Wrong! Based upon an approximation of an industry accepted formula, the PRICE
HO [1] production-production equation, Dean [7] demonstrated theoretically that the
optimal trajectory for cost reduction is predominantly in the direction of system complexity
reduction, not system weight reduction. Thus the phrase "keep it simple" is a primary state
of mind required for reducing cost throughout the design process.

How do we keep a system simple? Korda [9] gives us one clue. His quantification of the
PRICE HO manufacturing complexity [1] for structural components is

Mx = 4.3 PLTFM ©-32 NP 0-9% (1+(.06 (N - MATUR))) / (1.35 PRECI ~ 0:081
0.024

where PLTFM is the specification level, NP is the number of parts, MATUR is the relative
assembly tolerance, PRECI is the machining tolerance, Ml is the machinability index of the
material, and N = 3 if PLTFM < 2 else 4.

Additional equations exist for machining hog out and surface finish.

An analysis of these equations for structural components indicates that to reduce system
complexity we need to reduce specification difficulty, reduce part count, relax assembly
tolerance requirements, relax component machining tolerances, use more machinable
materials, relax surface finish requirements, and use near net shape raw stock to minimize
machining. In other words, "keep it simple.”

Webb [21] has demonstrated that the industrial culture within the United States is valuing
performance increases far more than cost reduction. In virtually every category of system
examined, cost has increased over time, as each new system in each category is produced, at
a rate well above inflation. His measured technology escalation rates are hypothesized to
represent the difference between performance induced increased system complexity and
decreased system production complexity due to improvements in manufacturability.

If these trends of cost increase are to be reduced, serious attention must be given to
reductions in system performance increases or major improvements in system
produceability.

How can we reduce performance induced cost?
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First, we must define what the cost driving performance requirements are. This can be
accomplished by implementing activity based [19] parametric [6] accounting from which
parametric equations which relate system cost to system requirement parameters, system
performance parameters, or engineering process parameters can be derived. Next, we
assess the sensitivity of cost to the parameters by examining the magnitude and sign of the
partial derivatives, odcost/ dparameter. The objective of designing for cost is to reduce cost.
Thus, through design, subject to constraints on the system, we wish to move each parameter
in the direction which provides a negative cost differential; that is, reduce cost. Finally, we
must define how we can realistically accomplish this task through design. This will be
discused in the following section on robust design.

How can we increase system produceability? The example above is appropriate. Also,
Sjovold et. al. [14] provide an example. They indicate the cumulative average unit cost at
qguantity Q of a liquid rocket engine is estimated by

-0.251  -0.132 ,,, 0.618 0.347
Cpq = 0.00124 Q R W (Pg N)

and the cost of developing the engine is estimated by

Cq = 52.947 C 150 0939 Py, 0018

where R is the annual production rate, W is the engine mass, P si is the pump discharge
pressure, N is the number of coolant passages, C p150 is the cumulative average unit cost at
the 150th engine, and P, is the number of development prototypes.

Q and R are programmatic variables determined by program requirements. The heuristic
guidance from these equations is that both development and unit production cost will be
reduced if we purchase the largest number of engines within the requirements. This,
however, leads to a higher total system cost. The equations indicate that we should produce
as many engines per year as possible within production capacity constraints.

W is a design variable. In current form, these equations suggest we should reduce weight as
much as possible to reduce cost. This is possibly an incorrect deduction since another
variable, W, implicitly exists in the production equation. To make this variable explicit, the
production equation becomes

-0.251 -0.132 0.618 0.347
Cpg=e " Q R w (Pgi N)

where W is a generalized production complexity [7]. For the liquid rocket engine historical
data base we have the special case

i = In(0.00124) .

Since production complexity and weight are related, this relationship must be considered.

In the aerospace industry weight reduction, at best, reduces cost minimally because of the
associated increase in production complexity required to reduce weight. Since M is dominant
over weight in reducing cost [7], it is appropriate to ask how to reduce production

complexity. This will be discussed below.
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Psi and N are also design variables. The guidance provided here is to reduce the pump

discharge pressure as much as possible and to use as few coolant passages as possible. Both
should lead to system simplicity.

The development cost equation is best examined by defining the development equation as

— 3 0.939
Cq=e ~ Cpisp Pro

0.618
where B is a generalized development complexity. For the liquid rocket engine historical
data base we have the special case

R = In(52.947).

Since the effects of C ;159 have already been discussed, the advice deduced is to reduce 3 and
Pro- It makes sense that to reduce either development complexity or the number of

prototypes will reduce cost. It could be argued, however, that reducing the number of
prototypes could increase risk; and hence, even increase cost. Thus, a method of reducing
prototypes without increasing risk is required. It turns out that the Japanese have been
developing processes which require fewer prototypes, reduce production complexity, and
reduce development complexity.

One particularly promising technique is an emerging method of design optimization for
performance, quality, and cost, called Robust Design [12], which was pioneered by Dr.
Taguchi [17]. The objective in Robust Design is to select the best combination of
controllable design parameters so that the system is robust to noise factors in
manufacturing and operational environments. Robust Design has been used successfully in
Japan and the United States in designing reliable, high quality products at low cost in less
time in such areas as automobiles and consumer electronics [5, 10, 12, 15, 20].

THE ROBUST DESIGN PROCESS FOR COST
Background

The product or process design has the greatest impact on life cycle cost and quality [8, 16,
17]. The three major steps in designing a quality product/process are system design,
parameter design, and tolerance design [3, 12, 16, 17].

System design involves innovation and technical knowledge of the engineer to develop an
initial feasible design architecture. The initial design may be functional, but it may be far
from optimum in terms of quality and cost.

After the system architecture is determined, parameter design begins. Parameter
design selects near optimum levels for the controllable design parameters such that the
system is functional, exhibits a high level of performance under a wide range of
conditions, and is robust to noise factors. Studying the design variables one at a time or
by trial and error is a common approach to design optimization [3, 12]. The result is
usually a long and expensive time span for design completion or a premature
termination of the design process with a product design which is far from optimal.
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In contrast, Taguchi's robust design method provides a systematic and efficient approach
for determining a near optimal configuration of design parameters for performance and
cost [3, 8, 10, 11, 12]. Robust design uses orthogonal arrays (OA) from design of
experiments theory to significantly reduce the number of experimental configurations
to be studied. OA's are not unique to Taguchi. They were discovered considerably

earlier [3]. However, Taguchi simplified their use by providing tabulated sets of
standard OA's and corresponding linear graphs to fit a specific project [2, 3, 12].

To evaluate the quality of the product, robust design uses a statistical measure of
performance called signal-to-noise (S/N) ratio from electrical control theory. The S/N
ratio developed by Dr. Taguchi is a performance measure for choosing control levels that
best cope with noise [3, 4, 12]. The S/N ratio takes both the mean and variability into
account. In its simplest form, the S/N is the ratio of mean (signal) to the standard deviation
(noise).

Making use of OA and S/N ratios, robust design improves the efficiency of generating the
information necessary to design systems which are robust to variations in operating
conditions, variations in manufacturing processes, and system degradation due to to
deterioration of parts. As a result, development time can be shortened, R&D costs can be
reduced, and a near optimum choice of parameters can result in wider tolerances so that low
cost components and production processes can be used. In addition, important design factors
affecting operation, performance, and cost can be identified. Also, manufacturing and
operations costs can be greatly reduced [3, 10, 12].

The third step, tolerance design, is only required if robust design can not produce the
required performance without costly special components or high process accuracy. It
involves tightening tolerances on parameters where their variability could have a large
negative effect on the final system. Typically, tighter tolerances leads to higher cost [9,
12].

Most American and European engineers focus on system and tolerance design to achieve
performance. The common practice in aerospace design appears to be basing the first
feasible design on an initial prototype, studying the reliability and stability against
noise factors, and then correcting any problems by requesting better, costlier
components, and elements with tight tolerances [5, 12]. In other words, parameter
design is largely overlooked. As a result, the opportunity to improve quality without
increasing cost is missed.

The use of Taguchi's methods has been increasing in the U.S: the application of the
methods is expected to become widespread in the coming decade [8, 12] .
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Steps in Robust Design

Optimizing a product or process design means determining the best system
architecture, best control factor settings, and most relaxed tolerances. Robust design
involves eight steps [12]:

Step 1. Define the problem,

Step 2. Define the noise factors,

Step 3. Define the objective function to be optimized,

Step 4. Define the control factors and their alternative levels,

Step 5. Design the matrix experiment and the data analysis procedure,
Step 6. Conduct the matrix experiment,

Step 7. Analyze the data and determine near optimum levels for the control
factors,
Step 8. Predict the performance under these levels.

The first five steps are used for planning the experiment. In the sixth step the
experiment is conducted. In steps seven and eight the experiment results are analyzed
and verified. The steps will be demonstrated using a fuel cost minimization problem.

An Example: Fuel Storage Purchasing Problem

step 1: define the problem

One of the problems encountered in fuel purchasing is to determine how many liters of
each item to purchase for a minimum cost policy. System costs for this example are
described by the following equation [13]:

Minimize C(x) = Y (FiWi/X; + H{X/2)

where F; = fixed cost for ith item
W, = withdrawal rate per unit of time for ith item
H; = holding cost per unit time for ith item
C(x)= total storage cost.

Assume that the following costs are determined:

ltem F;($) W; H;($)

1 9.60 3 0.47

2 4.27 5 0.26

3 6.42 4 1.71

The problem is to determine how many thousand liters of each item (X i ) to purchase for

minimum cost, subject to storage space availability.
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step 2: define the noise factors

Noise factors are those variables which can not be controlled or are too expensive to control
[12]. Variations due to noise factors affect purchasing decisions. Therefore, one should
identify as many noise factors as possible. Engineering judgement should be used to decide
the more important ones to be considered in the analysis. We will assume that the
withdrawal rates (W ;) for the three items under consideration are uncertain.

The first noise factor N 1 is the withdrawal rate for item 1 . It can range from 2 to 3 units,
depending on demand. The second noise factor N 2 is the withdrawal rate for item 2.
Experience shows it could be higher (up to 6 units) rather than its expected rate of 5 units.

The last noise factor N 3 is the withdrawal rate for item 3. It could be higher than the
expected rate of 4 units (up to 5 units).

step 3: define the objective function to be optimized

Minimum cost is the objective. The objective function to be optimized is total system
cost C(x) subject to storage space constraints. The objective is to find the combination
which provides a near minimal C(x), considering the uncertainty due to the cited noise
factors.

step 4: define the control factors and their alternative levels

The amounts in thousands of liters for each fuel (X 1, X2, X3) are the control factors
since they can be changed to determine the total storage cost. Under zero noise

conditions, a preliminary study determined the initial control parameter values in

liters to be

X1= 9, Xo= 11, and  Xz=7.

As a next step, the cost and design engineers want to study alternative levels for the
controllable design parameters, considering the uncertainty due to noise factors. In
robust design, two or three levels are selected for each factor. The level of a test
parameter refers to how many test values of the parameter are to be analyzed.
Commonly, one of these levels is taken to be the initial operating condition.

Three alternative levels were identified for the controllable design factors (Figure 1a).
These factor levels define the experimental region for study. All of these levels satisfy
power and storage constraints. Level one represents the initial setting (base line).
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Control Factor Levels Noise Factor Levels
1 2 3 1 2

X1 9 11 13 N1 48 56
X2 | 11 13 15 N2 24 27
X3 7 9 11 N3 95 100

I i

Initial Setting Initial Setting
(a) (b)

Figure 1. Factor Levels for the Optimization Problem

Two levels of noise were identified (Figure 1b). Level one represents the initial
setting.

step 5: design the matrix experiment and the data analysis procedure

Next, the matrix experiment is designed and the appropriate orthogonal arrays are
selected for the control and noise factors. Taguchi provides tabulated sets of standard
orthogonal arrays and corresponding linear graphs to fit specific projects [2, 3, 12].
To select the appropriate orthogonal array, we count the total degrees of freedom to find
the minimum number of experiments which must be performed [2, 12]. One degree of
freedom is associated with the overall mean, regardless of the number of control
factors. We must add the degrees of freedom associated with each control factor, which
is equal to one less than the number of levels. We have a total of 7 degrees of freedom;
therefore, we need to conduct at least 7 experiments. This fits Taguchi's standard L
array, shown in Figure 2a. The L g array has 8 degrees of freedom and can handle four
factors at 3 levels.

Having only three control factors, one of the columns of the array will be left empty.
Orthogonality is not lost by keeping one or more columns of an array empty [2, 12].

9
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A B C D

1 |1 1 1 1

2 |1 2 2 2

3 |1 3 3 3

4 |2 1 2 3 A B C

5 |2 2 3 1

6 |2 3 1 2 1 11 1

7 3 1 3 2 2 1 2 2

8 |3 2 1 3 3 2 1 2

9 |3 3 2 1 4 2 2 1
@: Lg (3%) (b): L4 (23)

Figure-2: Orthogonal Arrays

The L4 array (Figure 2b) was selected for the three noise factors from the tabulated
standard orthogonal arrays [18].

step 6: conduct the matrix experiment

The next step is to define a procedure to simulate the variation in cost due to the noise
factors. Taguchi proposes orthogonal array based simulation to evaluate the mean and
the variance of a products response resulting from variations in noise factors [4, 12,
17]. Orthogonal arrays are used to sample the domain of noise factors. The diversity of
noise factors are studied by crossing the orthogonal array of control factors by an
orthogonal array of noise factors [3], as shown in Figure 3. The results of the
experiment for each combination of control and noise array experiment are denoted by
Yij-

We can now study the design against four different combinations of noise factors by
running only 36 experiments.

The matrix experiment is conducted using the appropriate system of mathematical
equations for cost and storage space constraints [13]. The response (Y ij), the total
cost in dollars, is computed for each combination of control and noise matrix

experiments. The results are displayed in Figure 3. Note that column D in the control
orthogonal array was left empty since we had three control factors.
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Noise Matrix
1 2 3 4
N1 3 3 2 2
N2 5 6 5
N3 4 5 5 4
Control Matrix

X1 X2 X3 D Y1 Y2 Y3 Y4
1 9 11 11 14.49 15.80 14.34 13.81
2 9 13 13 14.24 15.29 13.89 13.51
3 9 15 15 14.38 15.24 13.89 13.60
4 1 11 11 14.17 15.27 14.01 13.69
5 11 13 13 14.22 15.13 13.93 13.68
6 11 15 15 14.38 15.58 14.42 13.79
7 13 11 11 14.33 15.30 14.18 13.98
8 13 13 13 14.41 15.65 14.58 14.00
9 13 15 15 14.24 15.24 14.22 13.78

Figure 3: Results of the Matrix Experiment

step 7: analyze the data and determine near optimum levels for the
control factors

Traditionally, with data from a designed experiment, only the mean response is analyzed
[4]. Robust design employs a signal to noise (S/N) ratio to include response variation.

The S/N ratio developed by Dr. Taguchi is a performance measure for choosing control

levels which best cope with noise [3, 4, 12]. The S/N ratio accounts for both the mean
and variability. The S/N equation depends on the optimization criterion. While there

are many different S/N ratios, the smallest-is-best S/N ratio is used below since the

objective is to minimize cost [2, 4, 12].

S/IN

-10 log (Mean square deviation)
-10 log (1/n  3y;?).

The S/N ratios for the data are computed and displayed in Figure 4a.
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Control Matrix

X1 X2 X3 D SIN
1 1 1 1 1 23.30
2 1 2 2 2 -23.08
3 1 3 3 3 -23.10
4 2 1 2 3 -23.11
5 | 2 2 3 1 2307 Average S/N
6|2 3 1 2 23.26 X1 X2 X3
713 1 3 2 3.0 1 -23.16 -23.20 23.29
s |3 2 1 3 2332 2 -23.14 -23.15 -23.11
9 3 3 2 1 2316 3 -23.33 -23.17 -23.12

(@) Signal-to Noise Ratio (b) Response Table

Figure 4: Signal-to-Noise Ratios and the Response Table

Graphing the S/N ratios visually identifies the factors which appear to be significant

[2, 4, 12, 17]. Since the experimental design is orthogonal, it is possible to separate

the effects of each factor [4]. The average S/N ratios for each level of the three control
factors are displayed in the response table given in Figure 4b. The average S/N ratios

shown in the response table are calculated by taking the average from Figure 4a, for a
parameter, at a given level, every time it was used. For example, X 2 was at level two in
experiments 2, 5, and 8. The average of corresponding S/N ratios is -23.15 which is

shown in the table under X 5 at level 2.

The average S/N ratios from the response table are plotted in Figure 5. The graphs

reveal that control parameter X 3 has a greater effect on cost than X 1 and X2. Level two
appears to be the best choice for parameters (X 1, X2 , X3) since it corresponds to the
largest average S/N ratio.

- 10 -
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X1 X2 X3
o 12 8 o 1 2 3 o 1 2 3
-23.1 } } i -23.1 1 1 1 -23.1 1 1 1
. T ] 1
u T
-23.15 + — -23.15 4 /l\. -23.15 4
SIN 2324 -23.2 n 23241
| ]
-23.25 4 -23.25 -23.25 4
2331 -23.3 2331 .

Figure-5: S/N Ratios

The near optimum levels for the three controllable parameters are

Test Parameters: X1 X2 X3
Best Level: 2 2 2
Parameter Setting : 11 13 9

Note that this combination was not actually an experiment carried out. In robust design
the predicted optimum setting need not correspond to one of the rows of the matrix
experiment. This is often the case when highly fractioned designs are used [4].

step 8: predict the performance under these levels

The initial settings for the control parameters were

Test Parameters: X1 X2 X3
Parameter Level: 2 2 2
Parameter Setting : 28 39 38

These settings correspond to an initial average cost of $14.61 with a S/N of -23.30.
Selected best parameter levels after robust design provide an average cost of $14.21
with a S/N of -23.06. In this case, robust design resulted in a cost saving of about 3%.

CONCLUSIONS

Parametric cost analysis is defined as the generation and application of equations to cost
analysis. When equations exist which define cost as a function of system requirement
parameters, system performance parameters, or engineering process parameters, a
tool exists to enable designing for cost. Cost sensitivity is expressed through the partial
derivatives of these functions. This provides insight into the magnitude and direction of
cost change for given parameter changes. This information can be used to provide
heuristic design-for-cost guidelines.

The robust design method is a systematic and efficient approach for determining the
near optimum set of design parameters for cost. Principal benefits include
considerable time and resource savings; determination of important factors affecting
operation, performance, and cost; quantitative measures of the robustness (sensitivity)
of the design results; and quantitative recommendations for design parameters which
achieve lower cost.

- 11 -
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Robust design moves cost considerations to the design stage where the greatest benefits
can be realized. Also, the robust design approach aids integration of cost and
engineering functions.

Results suggest that the robust design method offers improvements in engineering
productivity and system cost.
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